Mit der Smartwatch Insulinbildung steuern

ETH-Forschende haben einen Genschalter entwickelt, der sich mit dem grünen LED-Licht handelsüblicher Smartwatches betätigen lässt - eine Premiere, die künftig für die Diabetesbehandlung genutzt werden könnte.
Mit dem grünen Licht einer Smartwatch können Forschende ein insulinproduzierendes Gen-​Netzwerk anschalten. (Bild: Colourbox)

Viele moderne Sportuhren oder Smartwatches haben LED-Dioden integriert. Diese geben kontinuierlich oder gepulst grünes Licht ab, das die Haut durchdringt und unter anderem dafür genutzt wird, während sportlicher Betätigung oder in Ruhe den Puls zu messen.

Solche Uhren sind mittlerweile weit verbreitet. Darum wollen ETH-Forschende um Martin Fussenegger vom Departement Biosysteme in Basel diese Lichtquelle nutzen, um durch die Haut hindurch Gene zu steuern und das Verhalten von Zellen zu verändern. Die Schwierigkeit dabei: «Ein molekulares System, das auf Grünlicht reagiert, gibt es natürlicherweise in menschlichen Zellen nicht», betont Fussenegger, «wir mussten deshalb etwas Neues konstruieren.»

Grünlicht der Uhr aktiviert Gen

Entwickelt haben der ETH-Professor und seine Mitarbeitenden schliesslich einen molekularen Schalter, der – einmal implantiert – mit grünem Licht von Smartwatches aktiviert werden kann.

Der Schalter ist gekoppelt mit einem genetischen Netzwerk, das die Forschenden menschlichen Zellen hinzufügten. Für diesen Prototyp verwendeten sie wie üblich HEK-Zellen. Je nach Konfiguration dieses Netzwerks – sprich: mit welchen Genen es ausgestattet ist – kann es beispielsweise Insulin produzieren, sobald grünes Licht auf die Zellen trifft. Wird das Licht ausgeschaltet, wird der Schalter inaktiviert und der Vorgang stoppt.

Die Forschenden benutzten dafür die Standardsoftware der Smartwatch und mussten nicht einmal eigene Programme entwickeln. In ihren Versuchen konnten sie das Grünlicht einschalten, indem sie die «Lauf-App» starteten. «Solche Uhren ab Stange sind universell nutzbar, um den molekularen Schalter umzulegen», sagt Fussenegger. Neue Modelle senden das Licht gepulst, was sich noch besser eignet, um das Gennetzwerk am Laufen zu halten.

Der molekulare Schalter ist allerdings komplizierter. In der Membran der HEK-Zellen wurde ein Molekülkomplex eingebaut, der ähnlich einer Eisenbahnwagenkupplung mit einem entsprechenden Gegenstück gekoppelt ist. Sobald grünes Licht angeschaltet wird, löst sich das in das Zellinnere hineinragende Stück ab und wird in den Zellkern transportiert. Dort schaltet es ein Gen an, das Insulin produziert. Sobald das Grünlicht erlischt, verbindet sich das abgekoppelte Teil wieder mit dem in der Membran verankerten Gegenstück.

Controlling implants with wearables

The researchers tested their system on both pork rind and live mice by implanting the appropriate cells into them and strapping a smartwatch on like a rucksack. Opening the watch’s running program, the researchers turned on the green light to activate the cascade.

“It’s the first time that an implant of this kind has been operated using commercially available, smart electronic devices – known as wearables because they are worn directly on the skin,” the ETH professor says. Most watches emit green light, a practical basis for a potential application as there is no need for users to purchase a special device.

According to Fussenegger, however, it seems unlikely that this technology will enter clinical practice for at least another ten years. The cells used in this prototype would have to be replaced by the user’s own cells. Moreover, the system has to go through the clinical phases before it can be approved, meaning major regulatory hurdles. “To date, only very few cell therapies have been approved,” Fussenegger says.

Literaturhinweis

Mansouri M, Hussherr M-D, Strittmatter T, Buchmann P, Xue S, Camenisch G, Fussenegger M: Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nature Communications, 2021, 7 June; doi: 10.1038/s41467-021-23572-4